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Abstract

Chapter 1 presents the first published measurements of Sr-isotope variability in olivine-
hosted melt inclusions. Melt inclusions in just two Samoan basalt hand samples exhibit most of
the total Sr-isotope variability observed in Samoan lavas. Chapter 3 deals with the largest
possible scales of mantle heterogeneity, and presents the highest magmatic *He/*He (33.8 times
atmospheric) discovered in Samoa and the southern hemisphere. Along with Samoa, the highest
*He/*He sample from each southern hemisphere high *He/*He hotspot exhibits lower '“*Nd/'"*Nd
ratios than their counterparts in the northern hemisphere. Chapter 2 presents geochemical data
for a suite of unusually enriched Samoan lavas. These highly enriched Samoan lavas have the
highest *’Sr/**Sr values (0.72163) measured in oceanic hotspot lavas to date, and along with trace
element ratios (low Ce/Pb and Nb/U ratios), provide a strong case for ancient recycled sediment
in the Samoan mantle. Chapter 4 explores whether the eclogitic and peridotitic portions of
ancient subducted oceanic plates can explain the anomalous titanium, tantalum and niobium
(TITAN) enrichment in high *He/*He ocean island basalts (OIBs). The peridotitic portion of
ancient subducted plates can contribute high *He/*He and, after processing in subduction zones, a
refractory, rutile-bearing eclogite may contribute the positive TITAN anomalies.



Introduction

Unlike the earth’s crust, it is difficult to sample the mantle directly. However,
there are a few isolated (and geographically limited) instances where we can observe the
uppermost regions of the mantle. Ophiolites—portions of oceanic plates that have been
uplifted and emplaced (obducted) onto the edge of continents—expose the uppermost
regions of the mantle on the surface (Dick, 1976). Similarly, at certain, ultra-slow
spreading mid-ocean ridges, mantle peridotites are emplaced on the surface (Dick et al.,
2003), where they can be recovered with deep submersibles or dredging operations.
Additionally, ultramafic xenoliths, which are pieces of the upper mantle entrained in
upwelling magmas, allow direct inspection of the composition of the upper mantle (but
unlike ophiolites and abyssal peridotites recovered by submersibles, ultramafic xenoliths
provide little spatial context for study of the mantle). Thus, except for these few rare
instances, we cannot examine the composition of the mantle directly: The deepest hole
ever drilled, only ~12.3 km deep, took 22 years and untold Soviet resources to complete--
and got no where near mantle depths (unfortunately, the drill site was atop thick
continental crust). While robots rove the surface of a planet, Mars, that is > 56,000,000
km distant, we have not directly observed our own planet at depths >12 km!

Nonetheless, there are indirect methods for evaluating the composition of the
deeper earth. Mantle geochemists often use lavas erupted on the surface as “windows” to
the composition of the mantle below. Hotspot lavas erupted in oceanic settings, or
oceanic island basalts (OIBs), are formed by partially melting and upwelling, solid
mantle. During melting, several radiogenic isotope systems and a number of trace
element ratios remain unfractionated (or little fractionated, in the case of trace elements
with similar compatibilities, at least when the partition coefficients are much less than the
degree of melting) from the original, unmelted mantle. OIBs exhibit a great deal of
isotopic and trace element heterogeneity, indicating that the mantle from which they were
derived is also quite heterogeneous (Zindler and Hart, 1986). This fundamental

observation leads to some of the most important questions in the field of mantle
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geochemistry: How did the mantle become heterogeneous? At what scale lengths do the
heterogeneities exist? How long do the heterogeneities survive?

One common paradigm in mantle geochemistry assumes that oceanic plates,
which form by melting and depleting the upper mantle at mid-ocean ridges, are subducted
back into the mantle from which they formed. Covered with a veneer of
oceanic/continental sediment, subducted oceanic plates inject sediment, oceanic crust and
depleted peridotitic mantle lithosphere into the mantle (Hofmann and White, 1982; White
and Hofmann, 1982). In this way, mantle heterogeneities are born. Following storage in
the mantle, subducted plates and sediment are thought to be sampled by upwelling
plumes that melt and erupt lavas on the surface. However, a counteracting mechanism—
chaotic mantle convection—stretches, thins, mixes and stirs, and thus homogenizes (or at
least greatly attenuates) mantle heterogeneities on long timescales.

In Chapter 1, isotopic heterogeneities are explored at very short lengthscales in
olivine-hosted melt inclusions in oceanic OIBs. Using a laser ablation system coupled to
a MC-ICPMS (multi-collector inductively coupled plasma mass spectrometer), *’Sr/**Sr
was measured in olivine-hosted melt inclusions recovered from Samoan basalts.
Complementing the pioneering work on Pb-isotopes in olivine-hosted melt inclusions
from two Polynesian hotspots (Saal et al., 1998), significant Sr-isotope heterogeneity was
also observed in the melt inclusions from individual Samoan basalt hand samples. Melt
inclusions in one Samoan lava exhibit a range of *’Sr/**Sr from 0.70686 to 0.70926. The
1sotopic diversity hosted in the melt inclusions from a single lava indicate that the size of
the melting zone beneath a Samoan volcano can be larger than the lengthscales of mantle
heterogeneities in the mantle upwelling beneath the hotspot. Furthermore, none of the 41
melt inclusions analyzed exhibit *’Sr/*Sr ratios lower than the least radiogenic whole-
rock basalts in Samoa (*'Sr/**Sr =0.7044). This ¥'Sr/**Sr data, combined with trace
element data on the same melt inclusions, provide strong evidence against assimilation of
oceanic crust as the source of the isotopic diversity in the melt inclusions.

Chapter 3 also deals with lengthscales of mantle heterogeneity, but by comparison
to Chapter 1, Chapter 3 considers the largest possible lengthscales of heterogeneity in the
Earth’s mantle. The high SHe/*He (or FOZO, Focus Zone; Hart et al., 1992) mantle
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reservoir, a domain that is considered to be one of the oldest (and deepest?) reservoirs in
the mantle, is the focus of chapter 3. In this chapter, the highest magmatic *He/*He ratios
ever recorded in a southern hemisphere lava (33.8 times atmospheric) are reported in
samples from the Samoan island of Ofu. These new measurements from Ofu Island place
Samoa in the same category of high *He/*He hotspots as Hawaii, Iceland and the
Galapagos. Along with Samoa, the highest *He/*He sample from each southern
hemisphere high 3He/*He hotspot exhibits lower '**Nd/"**Nd ratios than their counterparts
in the northern hemisphere (excluding lavas erupted in continental, back-arc, and
submarine ridge environments). The observation of a large-scale isotopic enrichment in
the FOZO-A (austral) high ‘He/*He mantle compared to the FOZO-B (boreal) high
’He/*He mantle is similar to the DUPAL anomaly, a globe-encircling feature of isotopic
enrichment observed primarily in southern hemisphere ocean island basalts. The possible
existence of hemispheric-scale heterogeneity in one of the oldest reservoirs in the mantle
has important implications for mantle dynamics. It suggests that regions of the (lower?)
mantle have escaped the rapid convection motions that dominate the upper mantle.
However, the origin of the hemispheric-scale heterogeneity in the FOZO (and DUPAL)
reservoir is unknown.

Nonetheless, having defined the variability that exists in the high *He/*He mantle,
Chapter 3 also explores whether or not the FOZO reservoirs are truly depleted, as is
commonly suggested (Hart et al., 1992), or whether they have been re-enriched. The
recent discovery of superchondritic '**Nd/'**Nd ratios in terrestrial (Boyet and Carlson,
2005), martian and lunar (Caro et al., 2007) suggests that bulk silicate earth (BSE) may
have superchondritic Sm/Nd ratios ("*"Sm/"**Nd>0.209, the minimum ratio necessary to
generate the terrestrial mantle 2N d/"**Nd anomaly relative to chondrites), and that the
earth has a minimum '"*Nd/'*Nd of 0.51304. If this is true, then the FOZO reservoirs
are actually enriched relative to BSE.

Chapter 2 explores a common paradigm in mantle geochemistry, that subduction
of marine/continental sediments can generate geochemically enriched mantle domains
that can be sampled by mantle upwellings. In this chapter, remarkably high *’Sr/*Sr

ratios are reported in submarine lavas recovered from the flanks of the Samoan island of
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Savai’i. These Savai’i lavas exhibit the highest *’Sr/**Sr ratios reported for ocean island
basalts to date. The isotope and trace element data are consistent with the presence of a
recycled sediment component (with a composition similar to the upper continental crust)
in the Samoan mantle. Importantly, Pb-isotopes in the most enriched Samoan lavas
preclude contamination by modern-marine sediment. The ultra-enriched Samoan lavas
have most certainly been “contaminated” by sediment, but the sediment is of an ancient
(>> 200 Ma) origin and has been recycled into the Samoan mantle source. In summary,
Chapter 3 provides the strongest evidence yet that the sediment that goes down in
subduction zones does come back up in OIBs. However, given the large mass of
sediment that has been subducted into the mantle over geologic history, it is still a
mystery why clear signatures of sediment recycling are so rare in OIBs (Hofmann, 1997).
Chapter 4 reports evidence for radiogenic '*’Os/'**Os and enrichment in
Titanium, Tantalum and Niobium (TITAN) in high *He/*He lavas globally. To explain
these observations, the dominant paradigm for the formation of mantle heterogeneity is
applied to the high *He/*He reservoir: Can the subduction of oceanic plates (crust and
peridotite) generate the geochemical signatures associated with the high *He/*He
reservoir? Radiogenic '*’Os/'®*0s and TITAN enrichment are both geochemical
signatures that are associated with recycled eclogite, suggesting that the high *He/*He
lavas were derived from a mantle source hosting a recycled slab component However,
eclogites are quantitatively degassed in subduction zones and do not have intrinsically
high *He/*He. None-the-less, the peridotitic portion of recycled slabs has been suggested
to preserve high *He/*He over time (e.g., Parman et al., 2005). The eclogitic and
peridotitic portions of subducted plates are intimately associated in space and time, a
geometry that is conducive to later mixing in the mantle. Thus, together, the two
lithologies can provide the “raw materials” for the formation of the high *He/*He mantle.
Importantly, the TITAN enrichment in high *He/*He mantle sampled by oceanic
hotspot lavas may provide a clue about the location of the “missing” TITAN in the earth.
Shallow geochemical reservoirs in the earth—continental crust and the depleted mid-
ocean ridge basalt mantle (DMM)—have a shortage of the element Ti, Ta and Nb
(TITAN) (McDonough, 1991; Rudnick et al., 2000). The observation of TITAN
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enrichment in high *He/*He OIB lavas suggests that the mantle domain hosting the

Earth’s “missing” TITAN is sampled by deep, high *He/*He mantle plumes.
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Chapter 1

Strontium isotopes in melt inclusions from
Samoan basalts: Implications for heterogeneity in
the Samoan plume*

Abstract

We measured *’Sr/*°Sr ratios on 41 olivine-hosted melt inclusions from nine
Samoan basalts using laser ablation multi-collector (LA-MC) ICPMS. 47S1/*Sr ratios are
corrected for mass bias after eliminating major isobaric interferences from Rb and K.
The external precision averages £320 ppm (20) for the ¥7Sr/*Sr ratios on natural Samoan
basalt glass standards of a similar composition to the melt inclusions.

All of the Sr-isotope ratios measured by LA-MC-ICPMS on Samoan melt
inclusions fall within the range measured on whole rocks using conventional methods.
However, melt inclusions from two Samoan basalt bulk rock samples are extremely
heterogeneous in *’Sr/**Sr (0.70459-0.70926), covering 70% of the variability observed
n ocean island basalts worldwide and nearly all of the variability observed in the Samoan
island chain (0.7044-0.7089). Seven melt inclusions from a third high *He/*He Samoan
basalt are isotopically homogeneous and exhibit ¥7S1/*Sr values from 0.70434 to
0.70469.

Several melt inclusions yield 7S1/*%Sr ratios higher than their host rock, indicating
that assimilation of oceanic crust and lithosphere is not the likely mechanism contributing
to the isotopic variability in these melt inclusions. Additionally, none of the 41 melt
inclusions analyzed exhibit *’Sr/**Sr ratios lower than the least radiogenic basalts in
Samoa (V'Sr/*°Sr=0.7044), within the quoted external precision. This provides an
additional argument against assimilation of oceanic crust and lithosphere as the source of
the isotopic diversity in the melt inclusions.

The trace element and isotopic diversity in Samoan melt inclusions can be modeled
by aggregated fractional melting of two sources: A high *He/*He source and an EM2
(enriched mantle 2) source. Melts of these two sources mix to generate the isotopic
diversity in the Samoan melt inclusions. However, the melt inclusions from a basalt with
the highest *He/*He ratios in Samoa exhibit no evidence of an enriched component, but
can be modeled as melts of a pure high *He/*He mantle source.

*Published as: M. G. Jackson and S. R. Hart, Strontium isotopes in melt inclusions from
Samoan basalts: Implications for heterogeneity in the Samoan plume, Earth. Planet. Sci.
Lett., v. 245, pp. 260-277, 2006, doi:10.1016/5.epsl.2006.02.040.

Reproduced with permission from Elsevier, 2007.
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Abstract

We measured Y S St ratios on 41 olivine-hosted melt inclusions from nine Samoan basalts using laser ablation multi-collector
(LA-MC) ICPMS. 7SSt ratios are corrected for mass bias after climmating major 1sobaric interferences from Rb and Kr. The
external precision averages 320 ppm (20) for the “'St™Sr ratios on natural Samoan basalt glass standards of a similar
composition to the melt inclusions.

All of the Sr-isotope ratios measured by LA-MC-ICPMS on Samoean melt inclusions fall within the range measured on whole-
rocks using conventional methods. Towever, melt inclusions from two Samoan basalt bulk rock samples are extremely
heterogencous in ™S Sr (0.70459 0.70926), cov cring 70% of the variability observed in occan island basalts worldwide and
nearly all of the variability observed in the Samoan island chain (1.7044- 0.7089). Seven melt inclusions from a third high “He e
Samoan basalt are isotopically homogencous and exhibit " St™Sr values from 0.70434 10 0.70469.

Several melt inclusions yiekd *"Sr**Sr ratios higher than their host rock. indicating that assimilation of occanic crust and
lithosphere is not the likely mechanism contributing 1o the isotopic variability in these melt inclusions. Additionally, none of the 41
melt inclusions analyzed exhibit *'Sr™Sr ratios lower than the least radiogenic basalts in Samoa (V'St*"Sr=10.7044). within the
quoted external precision. This provides an additional argument against assimilation of occanic crust and lithosphere as the source
of the isotopic diversity in the melt inclusions.

The trace element and 1sotopic diversity in Samoan melt inclusions can be modeled by aggregated fractional melting of two
sources: A high ‘He*He source and an EM2 (enriched mantle 2) source. Melts of these two sources mix 1o generate the isotopic
diversity in the Samoan melt inclusions. However, the melt inclusions from a basalt with the highest *He*He ratios in Samoa
exhibit no evidence of an enriched component, but can be modeled as melts of a pure high “He e mantle source.
€ 2006 Elsevier B.V. All nghts reserved.

-

Kevivords: ™ Sr*Sr; laser ablation; MC-ICPMS: melt inclusion; Samos; EM2: PHEM; FOZO

1. Introduction

Ocean island basalts (OIBs) erupted at hotspots are

thought to be the surface expression of buoyantly up-

* Corresponding author. Tel: ¢ 1 SOK% 289 3490; fax: 1 SO8 457 2175, welling mantle plumes that sample the mantle’s com-
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[1.2]. The Samoan islands and scamoumts, formed by
a mantle plume impinging on the Pacific plate just
north of the Tonga Trench, form a time-progressive
hotspot track |3,4] which conforms reasonably well to
Morgan’s hotspot model [5]. Samoan lavas exhibit the
highest “'St/™Sr ratios and the largest ¥'Sr/*°Sr
vanation (0.7044-0.7089) measured in fresh OIBs
[4.6], making them ideal for prospecting for diverse
Sr-isotope compositions in melt inclusions.

Olivine-hosted melt inclusions in Samoan  lavas
provide snapshots of diverse magma chemistry before
complete melt aggregation, providing an opportunity o
see more of the isotopic heterogeneity which exists in
the melt source but that is not detectable in whole
rocks. lHowever, the chemical variability i melt
inclusions may be generated by a number of processes
that obscure soarce variation, including pre-entrapment
fractional crystallization, post-entrapment diffusive re-
cquilibration, crustal assimilation, and degree, type and
depth of melting [ 7-16].

Studies delincating Pb-isotope  diversity in melt
inclusions have demonstrated that heterogeneous melt
SOUrCe COMPpOSILIONS are an important factor i generat-
ing compositional variabilty [17 21 A landmark Pb-
isotope study of melt inclusions hosted in basalts from
Mangaia Island in the Cook Islands revealed signifi-
cantly more isotopic heterogeneity than is found in
whole rocks from the island [ 1 7]. The results indicate the
presence of an unradiogenic Pb-isotope endmember in
the meltinclusions not discernable in whole-rock basalts.
Problematically, this unradiogenic Pb endmember has
been poorly characterized, owing parly to the large
uncertainties associated with in situ Pb-isotope measure-
ments: Pb-isotope data from melt inclusions generally
are limited to 2PbPh versus 2V PhA%Ph isotope
projections (due to the inability to collect precise H04pp
data on silicate melt mclusions), which place DMM
(depleted MORB mantle, low *He*He, low ¥7Sr/*“Sr),
FOZO (Focus Zone, high *He/*He, low ®'Sr/*Sp),
PIIEM (Primitive [felium Aantle, high “He/*le,
middle-range *'Sr/**Sr) and EM2 (enriched mantle 2,
low ‘e e, high 8r/%Sr) in such close praphical
proximity that they cannot be uncquivocally resolved.
The true pedigree of the unradiogenic Ph endmember in

Mangaia is still unknown, and could be similar to any of

these four endmembers.

An advantage to the Sr-isotope system is that the
EM2 endmember has dramatically higher ®7Sr/%Sr
ratios (~0.7089) [4] than the DMM (0.7026) [22],
PHEM (0.7045) [23] and FOZO (0.7030) [24] mantle
endmembers, and can be readily differentiated from the
three less radiogenie endmembers. PHEM hosts signif-
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icantly more radiogenic St than DMM and FOZ0 and is
easily resolved trom these two components. Untfortu-
nately, DMM and FOZO exhibit similar *’St/%Sr ratios
and it will be difficult to differentiate between these two
components as potential sources of the isotopic diversity
in melt inclusions.

We present Sr-isotope data from olivine-hosted melt
inclusions recovered from Samoan basalts, some of
which lie near the EM2 mantle endmember, with the
goal of better understanding the puzzling unradiogenic
component sampled by melt inclusions. To this end, we
also contribute  Sr-isotope data measured on melt
inclusions trom a recently discovered high 'He/*He
basalt from Samoa [25]. Our strategy is to analyze Sr
isotopes in melt inclusions from EM2 and high ‘1le/
*He endmember basalts from Samoa, to constrain the
tole of the various components-EM2, PHEM, DMM
and FOZO-that may be contributing to the Sr-isotope
diversity in the Samoan plame.

2. Methods

A detailed descripuon of the protocol used for in situ
measurement of St isotopes in basaltic glasses (and melt
inclusions) by LA-MC-ICPMS is provided in the Sup-
plementary data. In order to measare Sr-isotope ralios
in situ, we use a 213 nm NewWave laser ablation system
coupled to a Themo-Finnigan Neptune MC-1CPMS,
located in the Plasma Facility at Woods Hole Oceano-
graphic Institation (WHOI). During analytical runs, the
laser is run in aperture mode with 100% power, a pulse
rate of 20 Hz and a spot size of 120 pm. The raster
pattern varies depending on the size and shape of the
melt inclusion, and the line speed is 4 pm/s. Surface
contamination is removed by pre-ablation using the
same raster and spot size, but with a pulse rate of 5 Hz,
45% power und a raster speed of 30 pm/s.

During each analytical session, we measure intensities
on masses 82 through 88, Raw data arce exported 1o an
offline data correction program (TweaKr) for correcting
the Rb and Kr isobaric interferences. Runs with low
mtensities (1.e., < 1 Vonmass 88, due to small size or low
St content) were discarded as they are prone to large
systematic errors [26]. Masses 83 and BR are pure Rb and
St, respectively, with no signiticant known interterences,
and require correction only for mass fractionation. We
correct for Kr interferences on masses 84 and 86 so that
the mass fractionation-corrected S*St/%Sr value is
canonical (0.036372%). The protocol for comecting
mass 87 for the Rb imerference is the following: A
Samoan basalt glass with known ¥/8§%Se, from analysis
by conventional Thermal Tonization Mass Spectrometry
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(TIMS), is measured by laser ablation, Kr-corrected,
and the *RbA'Rb ratio is adjusted until the known
TIMS Y'St™Sr value of the glass 1s achieved. We
adopted the strategy of using the required **Rb/*"Rb of
the Samoan basalt glass standards 10 bracket the *Rb/
“Rb of the basalt glass unknowns. In order to estimate
the overall accuracy associated with this technique, we
apply contiguous bracketing of the glass standard runs,
and we are able to reproduce the known TIMS values to
within an average of =320 ppm (20 standard deviation).
However, due to uncertainty associated with the **Rb/
¥'Rb ratio (2.5875 £0.00275, 2er), the final, corrected

Y% ratio exhibits an eror magnification that is
directly proportional to the RW/Sr ratio of the sample.
Samples with low Rb/Sr will exhibit less ervor from the
Rb comection (145 ppm, Rb/Sr=0.04) than samplcs
with high Rb/Sr (503 ppm, Rb/Sr=0.14) (see Supple-
mentary data). However, over the range of Rb/Sr in the
Samoan basall glass standards (0.045-0.126), we find no
relationship between the intemal (in-mun) precision of

$7$1%Sr ratios (which average 45 ppm, 26 standard
deviation) and Rb/Sr during analyses of basalt glasses
by laser ablation. Similarly, there does not appear to be a
relationship between Ke'Sr and the internal precision or
reproducibility (extermal precision) of the *’Sr*¢Sy
vatios - Samoan glass standands over the range of
ratios that we have observed during melt inclusion
analysis (*"Kr/™Sr trom 0.00013 10 0.004). Finally, the
reproducibility of 'St/ Sr measurement does not
appear 10 be related to Sr intensity over the range of
Sr intensities observed in lasering Samoan glasses, a
range that encompasses the melt mclusion analyses.

Six melt inclusions were large enough for replicate
analysis (one meltinclusion, 71-2C, was replicated over
a one-year period), and five of their ¥/St/*°Sr ratios
were reproducible within the quoted precision. How-
ever, the replicate analysis ot melt inclusion 71-11a was
different by S50 ppm (sce Table 1), while error resulting,
trom the Rb correction is only 260 ppm (2¢') on Samoan
glass standards with similar Rb/St ratios. The internal
precision of the replicate analysis of this melt inclusion
was ~ 100 ppm (20). Data from this melt inclusion
indicates that larger-than-usual Rb/®'Rb variations
over time can occasionally generate uncertainties
(ahove the 27 level) in Y/'Sr/*°Sr that are somewhat
larger than error predicted by the data from Samoan
glass standards.

An upper limit for the *'Sr/**Sr measurement
precision on Samoan melt inclusions with low Rb/Sr
can be inferred from the near-uniform ratios obtained
on melt inclusions from the high “He*He Ofu basalt.
The Rb/Sr values were among the lowest during analy-
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sis of Ofu melt inclusions, and the tight clustering of
the Ofu melt inclusions may be partially explained by
decreased emror of *'St/*°Sr measurement for these
samples compared to other, higher Rb/Sr Samoan
glasses and melt inclusions from Vailulu’u and Malu-
malu. If we assume that the Otu melt inclusions are
isotopically homogencous, then the external preeision
on these 7 melt inclusions is +335 ppm (20). Some of
the apparent variability may be a result of error from
the Rb correction, which 18 =190 ppm (20) @t Rh/Sr
ratios of (.033, and may not retlect true variability.
Additionally, internal precision varied from 60 (o
226 ppm (24 standard crror) on the seven Ofu meh
inclusions.

Masses 85 and 8R represent pure Rb and Sr. ves-
pectively, so that fairly precise measurement of Rb/Sr
ratios can be generated. After comecting tor mass tiuc-
tionation (= 1.3%/amu), Rb/Sr ratios on Samoan basalt
glasses measured by laser ablation are reproduccable 1o
17% (20, compared o ratios obtained by XRI/ICP
techmques on the same samples), and preeise (1.7%%, 20)
during multiple runs on the same glass (see Supple-
mentary data).

Major clement compositions of glassy and homog-
enized melt inclusions were obtained with a JEOL-733
automated electron microprobe at the Massachusetts
Institute of Technology using an electron beam with
current of 10 nA and accelerating potential of 15 kV
focused to a spot of 1 2 pm in diameter for olivine
analyses, and defocused to 10 pm for glass analyses.
Trace element contents were determined with a Cameca
IMS 3f jon microprobe following the techniques
described n [27,28]. A small beam (5 pm diameter
spot), combined with a high-energy filtering technique
(80-100 ¢V window), was used to determine trace
element concentrations. Precision tor Sr, La, Zr, Y is
estimated to be £13%, and £20 30% for Ba, Nb and
Rb. Homogemzation of olivine-hosted melt inclusions
was performed in a furnace at 11871220 C (depending
on olivine composition) at 1 atm pressare for S min in a
graphite capsule.

To correct for the etiects of crystallization of olivine
in the glassy and homogenized melt inclusions, we add
equilibrium olivine to the melt inclusions m 0.1%
increments until equilibrium with mantle olivine (Fog)
is achieved, assuming olivine-melt partitioning of Fe
and Mg from [29]. Instead of correcting the melt in-
clusions to be in equilibrium with the host olivine, this
correction scheme is chosen so that we can compare
them to similarly comrected Samoan whole-rock lavas
(after discarding data from the most evolved-
MgO<6.5 wi.%-whole-rock samples).



